Investigation of GPCR allosterism and dimerization in single living cells using fluorescent ligands
نویسنده
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes.
For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, in...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملPortraying G Protein-Coupled Receptors with Fluorescent Ligands
The thermodynamics of ligand-receptor interactions at the surface of living cells represents a fundamental aspect of G protein-coupled receptor (GPCR) biology; thus, its detailed elucidation constitutes a challenge for modern pharmacology. Interestingly, fluorescent ligands have been developed for a variety of GPCRs in order to monitor ligand-receptor binding in living cells. Accordingly, new m...
متن کاملGlycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity.
The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogen...
متن کاملSerotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer.
Dimerization is a common property of G-protein-coupled receptors (GPCR). While the formation of GPCR dimers/oligomers has been reported to play important roles in regulating receptor expression, ligand binding, and second messenger activation, less is known about how and where GPCR dimerization occurs. The present study was performed to identify the precise cellular compartment in which class A...
متن کامل